
Introduction to Quantum Computation Sevag Gharibian
Summer 2020, Paderborn University

Lecture 9: The Quantum Fourier Transform

“. . . in mathematics you don’t understand things. You just get used to them.”
— John von Neumann.

It is hard to understate the impact of the Fourier transform (FT) on our everyday lives. Did you listen
to an MP3 sound file this week? You used the Fourier Transform. Download JPEG photos of your friends off
the internet? You used the Fourier Transform. Get an MRI recently? You guessed it — Fourier Transform.
So what is the Fourier transform, and why is it so useful?

In a nutshell, the Fourier Transform allows us to efficiently decompose a signal (say, a sound wave) into
its constituent frequencies. So, for example, that MP3 file which compresses your favorite song down to
a few megabytes — it roughly works by applying the Fourier Transform to break down the song into its
constituent frequencies, and then removing or filtering out the frequencies whose absence you are unlikely
to notice (e.g. very high or low frequencies). Moreover, what makes this so applicable in practice is that
the Fourier transform has a speedy near-linear time implementation. In particular, the Discrete Fourier
transform (DFT) of a vector |ψ〉 ∈ CN can be implemented via the Fast Fourier Transform (FFT) algorithm
using 1 O(N logN) field operations over C. These two properties (signal decomposition and highly efficient
implementation) are the one-two punch which makes the Fourier Transform so ubiquitous in everyday life.

It is thus perhaps fitting that, in the quantum setting, the Quantum Fourier Transform (QFT) underpins
one of the greatest achievements of the field — Shor’s quantum factoring algorithm. The primary focus
of this lecture is hence to introduce the QFT, its implementation, and various applications. With these
concepts under our belt, we will be ready to tackle the quantum factoring algorithm.

Now, we should be clear that broadly speaking, the topic of Fourier transforms is a bit confusing (this is
roughly what the quote atop this lecture is alluding to). There are, in fact, four Fourier transforms (at least
from the perspective of signal processing), depending on whether the input signal is continuous or discrete,
finite/periodic or infinite/aperiodic. These go by the names of Fourier Series (continuous, finite), Discrete
Fourier Transform (discrete, finite), Fourier Transform (continuous, infinite), and Discrete-Time Fourier
Transform (discrete, infinite). (The interested reader is referred to [Kul02] for further details.) Here, when
we talk about the FFT or QFT, we are referring to fast classical and quantum implementations, respectively,
of the DFT. Thus, our “signals” are discrete and finite, encoded as vectors |ψ〉 ∈ CN . The DFT, in turn, is
a linear opeator mapping CN to CN , representable as an N ×N complex matrix. For this reason, we begin
with a general class of matrices from which the DFT arises — the Vandermonde matrices.

1 From Vandermonde matrices to the Discrete Fourier Transform

Recall that given any complex number c ∈ C, one can define geometric sequence c0, c1, c2, . . . , cN−1. The
strong structure of such sequences gives rise to nice properties — for example, the sum of the sequence
entries, i.e. the geometric series

∑N−1
k=0 c

k, has a closed form. What happens if we embed such sequences
as rows of a matrix? We might naively expect to get a structured matrix whose properties can, like the
geometric series, be analyzed. Such matrices are called Vandermonde matrices.

Vandermonde matrices. As a naive first attempt for N = 3, fix any c ∈ C, and consider Vandermonde
matrix

M1 =

 1 c c2

1 c c2

1 c c2

 .

1Note that the naive implementation of the DFT is O(N2), which is essentially unusable in practice.

1

This is not very interesting — since all rows are the same, M is just a rank 1 embedding of the original
sequence (1, c, c2). But something interesting happens when we pick a different c for each row. For any
distinct c1, c2, c3 ∈ C, the matrix

M2 =

 1 c1 c21
1 c2 c22
1 c3 c23

 .

turns out to have linearly independent rows. Thus, it is full rank (and hence invertible, assuming M2 is
square).

Exercise. Suppose above that c1 = c2, but c1 6= c3. Is M2 full rank? What if we add a fourth row with
entries 1, c4, c24, for c4 distinct from c1, c2, c3?

To help give intuition as to the usefulness of Vandermonde matrices, one important application (which we
revisit at the end of this section) is evaluating polynomials p : C 7→ C at the points (in the case of M2)
c1, c2, c3 ∈ C.

Exercise. Consider polynomial p(x) = 4x2 − 3x + 1. Encoding the coefficients of p as vector |ψ〉 =
(1,−3, 4)T , show that the ith coordinate of M2|ψ〉 contains p(ci).

Exercise. Using the previous exercise, prove the Interpolation Theorm, which states: Any set of d + 1
point-value pairs {(ci, p(ci))}d+1

i=1 identifies a unique degree-d polynomial p, assuming all ci are distinct.

Returning to the DFT. Since we can choose any complex values for the {ci}, let us choose the
“quintessential” set of N complex numbers, the N th roots of unity. These are generated by taking powers
of the “principal” Nth root of unity, ωN := e2πi/N , i.e.

ω0
N , ω

1
N , . . . , ω

N−1
N .

For example, the principal 4th root of unity is ω4 = eπ/2 = i, and the 4th roots are (1, i, i2 = −1, i3 = −i).

Exercise. Draw the 4th roots of unity on the complex unit circle. More generally, what do the Nth roots
of unity look like on the circle?

Exercise. Why are there onlyN Nth-roots of unity? More precisely, why is sequence (ω0
N , ω

1
N , . . . , ω

N−1
N , ωNN)

redundant?

Plugging the Nth roots of unity into a Vandermonde matrix, we finally arrive at the order-N DFT:

DFTN =


1 1 1 1 1

1 ωN ω2
N · · · ωN−1N

1 ω2
N (ω2

N)2 · · · (ω2
N)N−1

1
...

...
. . .

...

1 ωN−1N (ωN−1N)2 · · · (ωN−1N)N−1

 .

Exercise. Why is the first row of DFTN all ones?

2

Exercise. What is DFT2? DFT3?

Since the roots of unity ωkN are distinct, the properties of Vandermonde matrices tell us DFTN (which is
square) is invertible. Can we write down its inverse? Remarkably, as shown in the exercise above, DFT2 is
just (up to scaling) the 2× 2 Hadamard matrix we have grown quite fond of. And this is no coincidence —

not only is DFTN invertible, it is actually unitary. Thus, its inverse is simply DFT†N (up to scaling).

Exercise. Prove that the rows of DFTN are orthogonal. You may find it useful to look up the closed
formula for geometric series, which also applies to complex numbers.

Exercise. Prove that a square matrix is unitary if and only if its rows (equivalently, columns) form an
orthonormal set. Conclude that, up to scaling, DFTN is unitary.

Exercise. What is the correct scaling required to make DFTN unitary?

Since DFTN is unitary, we can in principle apply it as a quantum gate to a quantum state! In other
words, given |ψ〉 ∈ CN , Nature allows the mapping DFTN |ψ〉 ∈ CN . The only problem is that for an n-qubit
system, the dimension N = 2n is exponential in n. So the question is: Can we implement DFTN via a
quantum circuit of size polynomial in the number of qubits, n? In the next section, we show the answer is
yes. It is this quantum implementation of the (normalized) DFT which is henceforth denoted the Quantum
Fourier Transform (QFT).

Exercise. The fastest classical implementation of the DFT is the Fast Fourier Transform (FFT), which
requires O(N logN) time. We shall show in Section 2 that the quantum implementation of the DFT, the
QFT, requires only time O(polylog(N)). Thus, on the face of it, it looks like one quantum computers
exponentially speed up computation of the DFT. Why is this a misleading claim? (Hint: How does the
output of the QFT differ from that of the FFT?))

Finally, back to polynomial evaluation. Before closing this section, let us return to our aside into
polynomial evaluation.

Exercise. Using the FFT, argue that an arbitrary polynomial of degree N −1 can be evaluated at all Nth
roots of unity in just O(N logN) time. What would be the naive runtime for this if we do not appeal to the
FFT?

Exercise. Given two degree N − 1 polynomials p and q, suppose we use the FFT (as in the previous
exercise) to evaluate p and q at the Nth roots of unity, i.e. to obtain two lists of point-value pairs

(1, p(1)), (ωN , p(ωN)), . . . , (ωN−1N , p(ωN−1N)), and

(1, q(1)), (ωN , q(ωN)), . . . , (ωN−1N , q(ωN−1N)).

Using the fact that for any (x, p(x)) and (x, q(x)), the tuple (x, p(x)q(x)) denotes the value of the product
of p and q on input x, show that the coefficients of polynomial pq(x) := p(x)q(x) can be computed in time
O(N logN). (Hint: You will also need the Interpolation Theorem.) How does this compare with the naive
runtime for multiplying out two degree N − 1 polynomials p and q (i.e. without using the FFT)?

Exercise. Use the FFT-based algorithm you derived in the previous exercise to compute the product of
polynomials p(x) = x2 − x + 1 and q(x) = 2x2 + 3x. (Hint: Since N = 3 in this case, you can do all
computations by hand.)

3

2 The Quantum Fourier Transform (QFT)

Suppose we have an n-qubit system. We now show how to implement the unitary operation 1√
N

DFTN for

N = 2n via polylog(N) = poly(n) 1- and 2-qubit gates. To avoid having to repeat the normalization factor
each time, we henceforth define QFTN := 1√

N
DFTN .

The N=4 case. We already know that QFT2 = H (i.e. when n = 1), so what is QFT4 (n = 2)? Recall
that any linear map is completely specified by its action on a basis, such as the standard basis. Thus, since
QFT4|j〉 extracts the jth column of QFT4, we have:

QFT4|j〉 =
1

2

3∑
k=0

e2πij
k
4 |k〉, (1)

where we have intentionally grouped k/4 together for the following reason. Recall from your programming
courses that, typically, division of two integers a/b is not “cheap”, but division by a power of 2, a/2k, is
cheap — it simply shifts over the bit representation of a to the right by k positions. For example, translating
3/2 to binary means we shift the bit representation of 3, 112, to the right one position to obtain 1.12, which
should be interpreted as 1 · 21 + 1 · 2−1.

Exercise. What is the binary representation of 14/29? Expand it out in terms of powers of 2.

Rewriting |k〉 in binary as |k1k2〉, we thus have

QFT4|j〉 =
1

2

3∑
k=0

e2πij(0.k1k2)|k1k2〉 (2)

=
1

2

3∑
k=0

e2πij(k1·2
−1+k2·2−2)|k1k2〉 (3)

=
1

2

(
1∑

k1=0

e2πijk1·2
−1

|k1〉

)(
1∑

k2=0

e2πijk2·2
−2

|k2〉

)
(4)

=
1

2

(
|0〉+ e2πi

j
2 |1〉

)(
|0〉+ e2πi

j

22 |1〉
)

(5)

=
1

2

(
|0〉+ e2πi(0.j2)|1〉

)(
|0〉+ e2πi(0.j1j2)|1〉

)
. (6)

Exercise. In Equation (6), why can we omit the bit j1 in the phase e2πi(0.j2)?

Now comes the key observation: Applying the Hadamard to single qubit standard basis state |j〉 ∈ C2 yields

H|j〉 =
1√
2

(
|0〉+ e2πi(0.j)|1〉

)
. (7)

Exercise. Convince yourself that Equation (7) holds.

Thus, returning to attempting to implement DFT4, we might naively try

H1 ⊗H2|j〉 = H1 ⊗H2|j1〉|j2〉 =
1

2

(
|0〉+ e2πi(0.j1)|1〉

)(
|0〉+ e2πi(0.j2)|1〉

)
. (8)

4

This is almost what we want (up to swapping the two output registers), except we are missing the bit j2
in the phase exp(2πi(0.j1j2)) of Equation (6). Inserting a phase θ ∈ R, however, is easily accomplished (at
least in theory) via gate

Rθ =

(
1 0
0 e2πiθ

)
. (9)

Exercise. Prove that Rθ is unitary for any θ ∈ R. What is its action on input |ψ〉 = α|0〉+ β|1〉?

Exercise. Consider circuit (R1/4 ⊗ I)(H ⊗H)|j〉. Why does this not reproduce DFT4|j〉 (up to swapping
the output registers)?

The exercise above highlights that in order to insert phase exp(2πi(0.0j2)) into the first term (and hence
first qubit) of Equation (8), the gate R1/4 must also depend on the second qubit state, |j2〉. We thus arrive
at our QFT4 circuit by adding a controlled -R1/4 gate (below, we omit swapping the two output qubits for
simplicity):

|j1〉 H R1/4 |0〉+ e2πi(0.j1j2)|1〉

|j2〉 • H |0〉+ e2πi(0.j2)|1〉

Exercise. Convince yourself that, up to swapping the output qubits, this is a correct QFT4 circuit.

The general N = 2n case. The general N = 2n case now follows analogously to N = 4. Below, we state
the action of QFTN on a standard basis state, followed with the corresponding circuit. Proofs are left as an
exercise. First, for standard basis state |j〉 ∈ C2n ,

QFT2n |j〉 =
1√
2n

2n−1∑
k=0

e2πij
k
2n |k〉 (10)

=
1√
2n

(
|0〉+ e2πi(0.jn)|1〉

)(
|0〉+ e2πi(0.jn−1jn)|1〉

)
· · ·
(
|0〉+ e2πi(0.j1j2···jn)|1〉

)
(11)

=:
1√
2n
|φn〉|φn−1,n〉 · · · |φ1,...,n〉, (12)

where we have defined |φk,...,n〉 := |0〉+ e2πi(0.jk···jn)|1〉 for convenience.

Exercise. Prove Equation (11).

The QFTN circuit is (up to reordering of output qubits):

|j1〉 H R1/22 · · · R1/2n−1 R1/2n · · · |φ1,...,n〉
|j2〉 • · · · · · · |φ2,...,n〉

|jn−1〉 • · · · H R1/22 |φn−1,n〉

|jn〉 • · · · • H |φn〉

Figure 1: The QFTN circuit (omitting final reordering of output qubits) acting on n qubits, where N = 2n.

5

Exercise. Note the output qubits of the circuit above are in the opposite order than in Equation (12).
Given the ability to perform the two-qubit SWAP gate, which maps any bipartite standard basis state |i〉|j〉
to |j〉|i〉, show how to rearrange the output of the circuit to match Equation (12).

Exercise. Prove that the following sequence of CNOT gates implements the two-qubit SWAP gate:

• •
•

Do you need to explicitly prove it for any choice of product input state |ψ〉|φ〉 ∈ C4?

Exercise. How does the SWAP gate act on each of the four Bell basis states for C4?

Exercise. Show the circuit of Figure 2, together with your use of postprocessing via SWAP gates, correctly
computes QFTN . This quantum circuit implementation of DFTN is what we call here the QFTN .

Exercise. What is the size of the circuit in Figure 2, where “size” is defined by the number of 1- and
2-qubit gates? (Hint: Think about arithmetic series.) How much overhead does the final postprocessing via
SWAP gates incur, and does this change the overall circuit size estimate for Figure 2? Give your estimates
in terms of both N and n.

Let us close this section by again stressing that, up to renormalization, DFTN and QFTN perform
precisely the same map. However, while the former is an abstract linear map, the latter is an explicit
quantum circuit implementation of DFTN which requires O(log2N) ∈ O(n2) gates. In contrast, the best
known classical implementation for the DFTN is the FFT, which requires O(N logN) time. Thus, it looks
like QFTN gives an exponential speedup over the FFT. But this is entirely misleading, as the FFT and
QFTN represent their output in entirely different formats — the former gives an explicit list of all N entires
of the output vector |ψ〉, whereas the latter gives |ψ〉 as a physical quantum state on logN qubits, whose
amplitudes cannot in general be individually recovered.

3 Quantum Phase Estimation (QPE)

With QFTN in hand, we are in principle in a position to discuss Shor’s factoring algorithm. However, it will
be instructive to take a top-down approach — to start by discussing, at a high level, the class of algorithms
factoring falls into. Specifically, the heart of the factoring algorithm is a special case of the following general
problem.

Definition 1 (Quantum Phase Estimation (QPE)).

� Input: A quantum circuit implementing a unitary operator U ∈ L
(
(C2)⊗n

)
, and eigenvector |ψθ〉

satisfying U |ψθ〉 = e2πiθ|ψθ〉, for some θ ∈ [0, 1).

� Output: Phase θ ∈ [0, 1).

Exercise. Prove that a normal operator U is unitary if and only if all of its eigenvalues have form eiθ.

Exercise. How would you solve QPE classically, i.e. given full written matrix and vector descriptions of
U and |ψ〉?

Despite its arguably dull appearance, QPE is an important problem. Not only is it at the heart of
the factoring algorithm, but QPE has applications throughout quantum algorithms, from quantum walks to

6

solving linear systems of equations. We will briefly comment on such applications in Section 3.1. Before then,
however, take a moment to break down the statement of Definition 1 in your mind, and allow the inevitable
myriad of questions to arise — Can we solve QPE in general? What if θ has no finite representation? How
do we magically get our hands on an eigenvector |ψθ〉? And what if we cannot compute such an eigenvector
efficiently?

3.1 Applications of QPE

To motivate QPE, we now briefly mention three applications, and give a flavor of how QPE is applied.

1. Factoring. As we shall see in a subsequent lecture, factoring classically reduces to the order-finding
problem: Given x,N ∈ Z+, what is the smallest r ∈ Z+ such that xr ≡ 1 mod N? For fixed x, we
can define unitary Ux to have action Ux|y〉 = |xy mod N〉. Then, Shor’s algorithm applies QPE to
Ux, and classically postprocesses the result to find the order r.

2. Quantum random walks. A classical random walk is exactly what it sounds like — given a graph
G = (V,E) and a starting vertex v ∈ V , in each time step we pick a random neighbor of our current
vertex and “walk” there. A general framework for implementing quantum walks uses QPE as follows.
Given a vector |ψ〉, as a subroutine in the quantum walk, we would like to reflect about |ψ〉, i.e. to
apply operator Rψ = 2|ψ〉〈ψ| − I.

Exercise. Show that Rψ is indeed a reflection about |ψ〉, i.e. that Rψ|ψ〉 = |ψ〉, and for any |ψ⊥〉
orthogonal to |ψ〉, Rψ|ψ⊥〉 = −|ψ⊥〉.

One approach for implementing Rψ, roughly, is to set up a unitary map U for which |ψ〉 is an eigen-
vector. Then, to simulate application of Rψ to an arbitrary state |φ〉, one uses QPE to decompose |φ〉
into its components: The component proportional to |ψ〉, and the component orthogonal to |ψ〉. With
this “on-the-fly” decomposition in hand, one can “inject” a phase of +1 or −1 as needed, respectively.

3. Powers of unitaries and linear systems. Suppose we have access to a circuit implementation of
unitary U , but want to instead apply

√
U . Can we do it using just U? QPE gives us an approach for

this, based on the following exercise.

Exercise. If the kth eigenvalue of U is eiθk , what is the kth eigenvalue of
√
U?

Thus, we can use QPE to, roughly, extract the eigenvalue phases of U into a separate register (i.e. as
strings |θk〉), and coherently apply the square root function to “update” or “customize” the eigenvalue
phases to |

√
θk〉. Undoing the QPE estimation circuit then effectively “reinserts” the eigenvalues back

into the operator to simulate
√
U .

A striking application of this idea of “eigenvalue surgery” is to solve linear systems of equations
A|ψ〉 = |b〉 (i.e. given A, |b〉, what is |ψ〉?). The setup there is more complicated, as the coefficient
matrix A need not even be Hermitian (never mind unitary). But the rough premise is similar — to
simulate the inverse A−1, one uses QPE to extract the eigenvalues λi of A (via some appropriate unitary
implementation of A), inverts the λi “manually” to 1/λi, and then uses postselection to “reinsert” the
edited eigenvalues “back into A”.

3.2 Quantum algorithms for QPE

We now give quantum algorithms for QPE. For simplicity, we assume the desired phase θ ∈ [0, 1) can be
represented exactly using n bits, i.e. in binary we write θ = (0.θ1 · · · θn)2. As a result, 2nθ = (θ1 · · · θn)2.
Our aim is, given U and |ψθ〉, to prepare a quantum n-qubit register containing |θ1 · · · θn〉 = |2nθ〉.

7

The algorithm. Recall that Equation (11) says

QFT2n |θ〉 =
1√
2n

2n−1∑
k=0

e2πik
θ
2n |k〉 (13)

=
1√
2n

(
|0〉+ e2πi(0.θn)|1〉

)(
|0〉+ e2πi(0.θn−1θn)|1〉

)
· · ·
(
|0〉+ e2πi(0.θ1θ2···θn)|1〉

)
. (14)

Thus, if we could prepare the right hand side above, applying QFT†N would recover |θ〉, as desired. There
are two ways to do this, depending on how much we want to assume about what we can do with U .

More restrictive: Assume we can apply controlled-Uk gates for any integer k ≥ 0. The following
exercise suggests an approach for solving QPE in this setting.

Exercise. Show that for non-negative integer k, Uk|ψθ〉 = e2πikθ|ψθ〉.

But now we claim it is easy to prepare the right-hand side of Equation (13): Prepare an equal superposition
over all |k〉, and then apply the controlled-Uk gate:

|0n〉|ψθ〉
H⊗n7−−−→ 1√

2n

2n−1∑
k=0

|k〉|ψθ〉
c−Uk7−−−−→ 1√

2n

2n−1∑
k=0

e2πikθ|k〉|ψθ〉 =
1√
2n

2n−1∑
k=0

e2πik
(2nθ)
2n |k〉|ψθ〉

QFT†N7−−−−→ |2nθ〉|ψθ〉,

where the first map applies local Hadamards to the first register, the second the controlled-Uk gates with the
first register as control and the second register as target, and the last the inverse QFTN to the first register.

Less restrictive: Assume we can apply controlled-U2k gates for any integer k ≥ 0. Suppose we
cannot raise U to arbitrary powers, but at least we can raise it to powers of 2. Can we still solve QPE? The
answer is yes (albeit slightly more involved than the previous case), and is given in the following exercise.

Exercise. Show that by leveraging the expansion in Equation (14) instead of Equation (13), one can still
solve QPE, even with the restricted ability of raising U to powers of 2. (Hint: Each choice of a power of 2
will allow you to prepare a specific term in the tensor product on the right hand side of Equation (14).)

Runtime and discussion. There are two major issues we have thus far swept under the rug: What if θ
is not representable in n bits, and what is the size of the circuit implementing QPE?

Irrational θ ∈ [0, 1). Suppose now θ’s binary representation is longer than n bits (potentially infinitely long).
Can we at least approximate θ to its n most significant bits? Yes, and in fact, the exact same circuit as
above works, with the following tweaks. Suppose we wish to compute the n most significant bits of θ’s
binary expansion with probability of success at least 1 − ε for ε > 0. Then, one can show that running the
same procedure as before suffices, so long as we are willing to slightly expand the size of the first register to
n+ dlog(2 + 1

2ε)e qubits (all initialized to |0〉 before the circuit starts).

Size of circuit. It is easy to see that the two dominant components of the QPE algorithm are the QFTN
circuit and the controlled-Uk gate. We know the size of the first; but what about the size of the second?
Unfortunately, here we hit a snag — to get n bits of precision in our estimate of θ, we need the gate c−U2n .
But in general it will be impossible, given an arbitrary U , to compute Uk efficiently if k is superpolynomial
in the input size.

8

Exercise. Suppose given an arbitrary unitary U on n qubits, we can compute U2n efficiently, i.e. with a
quantum circuit of size polynomial in n. Prove that this implies quantum computers can efficiently count
the number of solutions to a SAT formula φ : {0, 1}n 7→ {0, 1} (formally, the complexity class BQP would
contain #P). Since it is believed unlikely that quantum computers can solve NP-hard problems (never mind
#P problems), conclude it is unlikely for such a powering circuit for U to exist.

Thus, for arbitrary U , the best we can hope to do is estimate θ within O(polylog(n)) bits of precision (since
then the largest power of U we need is polynomial in n).

Exercise. Suppose we approximate θ = 0.θ1θ2 . . . ∈ [0, 1) by its first dlog ne bits, i.e. θ̃ = 0.θ1 . . . θdlogne.

What is the largest the additive error
∣∣∣θ − θ̃∣∣∣ can be?

The exercise above shows that logarithmically many bits of precision suffices to get inverse polynomial
additive error. Note that this suffices in certain applications, since (roughly speaking) polynomial-size
quantum circuits cannot distinguish states which are closer than an inverse polynomial in distance (trace
distance for density operators, which reduces to Euclidean distance for pure state vectors) anyway.

Conclusion for QPE. We conclude our discussion on QPE by reiterating that, to estimate θ within n

bits of precision, we require the controlled-U2k gate for k ∈ O(n). The overall runtime of QPE will thus
scale with the size of the QFTN circuit and the powering-of-U circuit, the latter of which generally scales
exponentially with k (the precise size is naturally context specific, i.e. depending on which U we have).
Second, for the factoring algorithm, being able to raise U to exponentially large powers will be important
— luckily, as we will see there, the specific U needed will implement a classical operation whose precise
structure allows such fast exponential powering.

References

[Kul02] S. R. Kulkarni. Chapter 4: Frequency domain and Fourier transforms. https://www.princeton.

edu/~cuff/ele201/kulkarni_text/frequency.pdf, 2002.

9

https://www.princeton.edu/~cuff/ele201/kulkarni_text/frequency.pdf
https://www.princeton.edu/~cuff/ele201/kulkarni_text/frequency.pdf

	From Vandermonde matrices to the Discrete Fourier Transform
	The Quantum Fourier Transform (QFT)
	Quantum Phase Estimation (QPE)
	Applications of QPE
	Quantum algorithms for QPE

